Investigation of Tip-leakage-vortex Breakdown and Its Role in Rotating Stall in a 1.5-stage Low-speed Axial-compressor

نویسندگان

  • Xiang HE
  • Hongwei MA
  • Wei WEI
چکیده

April 10-15, 2016 Abstract A whole-annulus unsteady numerical simulation is carried out to investigate the mechanism of the rotating stall in a 1.5-stage low-speed axial-compressor. By comparing the experimental and numerical results, the numerical results are validated. The numerical simulation captures the most features of the rotating stall of the 1.5-stage compressor observed from the experimental results. The unsteady bubble-like breakdown appears in the tip leakage vortex at the near stall condition. With the compressor throttling, the modal wave appears, increases in intensity and induces the part of the breakdown-vortex flow spilled over the adjacent blade leading-edge unsteadily, which form a spike. Consequently, the spikes emerge around the compressor annulus at the same time and the intensity and size of the spikes is increased rapidly during the inception period. At last, the spikes are merged into a large stall cell, which propagates around the annulus with 30% rotor speed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Investigation of Rotating-Stall in a Stage of an Axial Compressor with Two Different Approaches

An unsteady two-dimensional finite-volume solver was developed based on Van Leer’s flux splitting algorithm in conjunction with “Monotonic Upstream Scheme for Conservation Laws (MUSCL)” limiters and the two-layer Baldwin-Lomax turbulence model was also implemented. To validate the solver, two test cases were prepared and the computed results had good agreements with reference data. The rotating...

متن کامل

A Numerical Investigation on the Unstable Flow in a Single Stage of an Axial Compressor

An unsteady two-dimensional finite-volume solver was developed based on Van Leer’s flux splitting algorithm in conjunction with “Monotonic Upstream Scheme for Conservation Laws (MUSCL)” limiters to improve the order of accuracy and the two-layer Baldwin-Lomax turbulence model was also implemented. Two test cases were prepared to validate the solver. The computed results were compared with the e...

متن کامل

Effects of Different Turbulence Models in Simulation of Unsteady Tip Leakage Flow in Axial Compressor Rotor Blades Row

Characteristics of rotor blade tip clearance flow in axial compressors can significantly affect their performance and stable operation. It may also increase blade vibrations and cause detrimental noises. Therefore, this paper is contributed to investigate tip leakage flow in a low speed isolated axial compressor rotor blades row. Simulations are carried out on near-stall condition, which is val...

متن کامل

Numerical Investigation for the Impact of Single Groove on the Stall Margin Improvement and the Unsteadiness of Tip Leakage Flow in a Counter-Rotating Axial Flow Compressor

A low-speed counter-rotating axial flow compressor (CRAC) with single circumferential grooved casing treatment (CT) was investigated numerically. Both steady and time-accurate numerical calculations were performed to study the effects of the single grooved CTs over the rear rotor on the stability enhancement and the unsteadiness of tip leakage flow (TLF) in the CRAC. Parametric studies indicate...

متن کامل

Stall Vortex Shedding over a Compressor Cascade (RESEARCH NOTE)

The unstable flow with rotating-stall-like (RS) effects in a rotor-cascade of an axial compressor was numerically investigated. The RS was captured with the reduction in mass flow rate and increasing of exit static pressure with respect to design operating condition of the single rotor. The oscillatory velocity traces during the stall propagation showed that the RS vortices repeat periodically,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016